Hiroshi MIYAMAE, Hidetsugu NISHIKAWA, Koichi HAGIMOTO,
Goro HIHARA, and Miharu NAGATA

Department of Chemistry, Faculty of Science, Josai University,
Keyakidai 1-1, Sakado, Saitama 350-02

Formamide solution of lead(II) iodide (PbI $_2$) with hexamethylenetetramine (hmta) gave $[C_6H_{13}N_4]_2[Pb_3I_8(C_6H_{12}N_4)_2]$, while reaction of PbI $_2$ with hmta through intervention of water produced $[C_6H_{13}N_4][PbI_3]$. From characterization of the crystals by X-ray diffraction, hmta appears to tend to be protonated cations, but one of hmta is coordinated to Pb atom in the former compound.

Lead(II) iodide (PbI $_2$) forms adducts with Lewis bases. Hexamethylenetetramine (hmta) is known as a weak monoacidic base in water solution and produces some adducts with ${\rm AgNO}_3^{\ 2}$) and ${\rm HgX}_2^{\ 3}$) (X = Cl, Br, or I). For the purpose of yielding adduct of PbI $_2$ with hmta, they were mixed in water, ethanol, or formamide. However, we could have characterized at the present time two ionic compounds containing monoprotonated [hmtaH] $^+$ ([C $_6$ H $_1$ 3 $^{\rm N}_4$] $^+$) cation, one of which includes hmta molecules coordinating to Pb atom. Here we report the preparation and crystal structure of the title compounds.

Preparation of $[hmtaH]_2[Pb_3I_8(hmta)_2]^4$ (1) was as follows: 1 mmol of PbI_2 and 1.2 mmol of hmta were dissolved in 10 cm³ of formamide. Undissolved precipitant was filtered off and the filtrate was allowed to stand at room temperature. After a month, crystals were obtained from the solution. Found: Pb 28.2; I 45.2%. Calcd for $[C_6H_{13}N_4]_2[Pb_3I_8(C_6H_{12}N_4)_2]$: Pb 28.3; I 46.2%.

For $[hmtaH][PbI_3]^{5}$ (2); 2.5 mmol of PbI_2 fine powder was placed at the bottom of a branched glass tube and then a solution of 1.4 mmol of hmta in 25 cm³ of 0.5 mol dm⁻³ of acetic acid was poured into the tube. The end of the branch containing the PbI_2 was kept at 333 K in a water bath and the other kept at ambient temperature(ca. 292-294 K). After a few days, crystals grew in the lower-temperature region. Found: Pb 28.5; I 52.3; C 7.69; H 1.66; N 9.90%. Calcd for $[C_6H_13N_4][PbI_3]$: Pb 28.4; I 52.2; C 7.68; H 1.80; N 9.88%.

Colorless transparent crystal of 1 with dimension ca. 0.17 x 0.26 x 0.10 mm³ was used for X-ray measurement. Crystal data are: $[C_6H_{13}N_4]_2[Pb_3I_8(C_6H_{12}N_4)_2]$, F.W. = 2199.0, monoclinic, C2/c, $\alpha = 24.652(4)$, b = 10.913(2), c = 18.020(3) Å, $\beta = 95.24(2)$ °, U = 4877.7(14) Å³, U = 40.020(14) Z = 3.026 g cm⁻³, U = 10.020(14) M⁻¹,

1908 Chemistry Letters, 1988

F(000) = 3896, T = 298 K. Intensities were collected on a Rigaku AFC-5 automated four-circle diffractometer with graphite-monochromated Mo $_{K\alpha}$ radiation and corrected for Lorentz and polarization effects and absorption. 5739 reflections ($2 < 20 < 55^{\circ}$) were measured, of which 3544 unique reflections with $|Fo| > 4_{\sigma}(Fo)$ were considered as observed. The structure was solved by heavy-atom method 7) and refined by block-diagonal least-squares method. The final residual values were R = 0.081 and Rw = 0.088. Bond distances and angles around Pb atoms are given in Table 1(a).

For compound 2, colorless transparent crystal with dimension ca. 0.21 x 0.19 x 0.23 mm was used. Crystal data are: $[C_6H_{13}N_4][PbI_3]$, F.W. = 729.1, monoclinic, $P2_1/m$ (1st setting), a = 11.419(6), b = 9.441(2), c = 7.669(3) Å, $\gamma = 110.63(3)$ °, U = 776.7(6) Å Z = 2, Dx = 3.116 g cm Z = 10.8 mm Z =

Crystal structure of the compound l is depicted in Fig.1. There are two chemically different hmta molecules: One coordinates to a Pb atom through its one of N atoms [N(1)] and the other is mono-protonated cation. N(7)...N(l^{ii}) [symmetry operation: iii) x, -y, l/2 + z] interatomic distance of 2.90(3) Å suggests a hydrogen bond formation between the atoms. In this connection, the average bond length around the N(7) atom of l.52(4) Å is longer than that of the other N-C bonds of the cation of l.47(4) Å. The fact is consistent with that bond lengths around the protonated N atoms are longer than the distances around the unprotonated N atoms by about l.06-0.07 Å in [hmtaH]Brl0 and [hmtaH]Cl.l1 Such differences are also observed in the distances around the N(1) atom. In the

Table 1. Bond distances (\mathring{A}) and angles ($\mathring{\circ}$) around the heavy atoms (a) [hmtaH] [Pb_I_0(hmta)_] (1)

	3 8 .	<u> </u>			
Pb(1)-I(2)	3.266(2)	I(2) - Pb(1) - I(3)	84.23(5)	I(1) - Pb(2) - I(2)	89.81(6)
-I(3)	3.160(2)	-I(4),	85.31(6)	-I(3)	92.75(6)
-I(4)	3.296(2)	-I(2;i) 95.13(7)	-1(4)	168.07(6)
Pb(2)-I(1)	2.976(2)	-I(3;;) 177.83(5)) 96.79(6)	$-I(4^{\perp})$	100.43(7)
- I(2)	3.189(2)	-I(4 ¹¹) 96.79(6)	-N(1)	85.2(5)
-I(3)	3.266(2)	I(3) - Pb(1) - I(4)	85.23(6)	I(2) - Pb(2) - I(3)	83.78(6)
-I(4)	3.625(2)	-I(3 ¹¹ -I(4;;) 96.49(7)	-I(4)	81.18(6)
-I(4 ¹)	3.335(2)	$-I(4^{\perp\perp}_{i})$) 92.70(6)	$-I(4^{\perp})$	169.71(7)
-N(1)	2.70(2)	$I(4) - Pb(1) - I(4^{11})$)176.90(8)	-N(1)	91.5(5)
		I(3) - Pb(2) - I(4)	78.57(6)	$I(4) - Pb(2) - I(4^{\perp})$	88.53(6)
		$-I(4^{\perp})$	94.62(6)	-N(1)	102.7(5)
		-N(1)	174.9(5)	$N(1) - Pb(2) - I(4^{\perp})$	90.4(5)

a) Symmetry operations: i) -x, -y, -z; ii) -x, y, 1/2-z.

(b) [hmtaH] [PbI₂] (2) a)

	3 ~~				
Pb-I(1)	3.203(2)	I(1) - Pb - I(2)	88.81(5)	I(2)-Pb-I(3)	87.68(5)
-I(2)	3.212(2)	-I(3)	88.51(5)	-I(3½)	92.32(5)
-I(3)	3.275(2)	$-I(2\frac{1}{2})$	91.19(5)	$Pb-I(1)-Pb^{11}$	73.53(5)
		-I(3 ¹)	91.44(5)	-I(2)-	73.30(5)
PbPb ⁻¹	3.835(1)			-I(3) <i>-</i>	71.67(6)

a) Symmetry operations: i) -x, -y, -z; ii) -x, -y, 1/2+z.

Chemistry Letters, 1988

similar way, bond lengths around N(3) atom on the mirror plane in 2 [1.50(4) \mathring{A}] is slightly longer than the other ones [1.44(4) \mathring{A}], suggesting that the N(3) atom might be protonated.

Three chemically distinct I atoms exist in the crystal of the compound 1. One is a terminal [I(1)], the seconds [I(2) and I(3)] are bridging between Pb(1) and Pb(2), and the other one [I(4)] is three coordination, connecting [Pb₃I₈(hmta)₂]²ⁿ⁻ moieties to form an infinite chain structure. Consequently, the Pb(2)-I(1) bond is the shortest Pb-I bond in the crystal, while the Pb(2)-I(4) bond is the longest.

The Pb(1) on the 2-fold symmetry is in a slightly elongated I_6 octahedron along the Pb(2ⁱⁱⁱ)...Pb(1)...Pb(2). Coordination octahedron around the Pb(2) atom is a largely distorted one in which two of the bond angles, I(1)-Pb(2)- $I(4^i)$ and I(4)-Pb(2)-N(1), are extremely expanded from 90°, while the bond angle of I(3)-Pb(2)-I(4) is quite smaller than 90°. The longest Pb-I bond of Pb(2)-I(4) is behind the shortest one of Pb(2)-I(1). These are suggesting that the inert $6s^2$ pair electrons of Pb(2) atom accumulate around the Pb(2)-I(4) bond, avoiding the electrostatic repulsion from I(1) atom. The inert pair of Pb(1) exhibit no such accumulation. The Pb(2)-N(1) bond distance of 2.70(2) Å is slightly longer than those observed in the other systems. I(2)

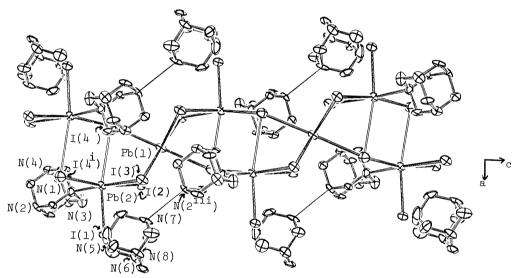
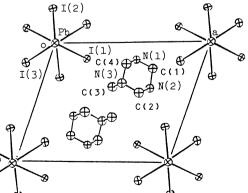



Fig. 1. A part of infinite chain structure of the compound 1 along -b with atom numbering.

Fig. 2. Packing diagram of the compound 2 with atom numbering, viewed along c. N(1), N(2), C(1), and C(3) are on the mirror plane normal to c axis, while N(3), C(2), and C(4) are not. Therefore, one N atom and two C atoms overlap N(3), C(2), and C(4), respectively.

1910 Chemistry Letters, 1988

Structure of 2 is illustrated in Fig.2. The crystal is composed of infinite $[PbI_3]_n^{n-}$ anion and isolated mono-protonated hmtaH⁺ cation. The $[PbI_3]_n^{n-}$ chain is formed by face-sharing PbI_6 octahedra. The chain extended along the c axis has no significant iteractions with organic cation which occupies channels between the chains.

Infinite $[PbI_3]_n^{n-}$ anion chain has been observed in $APbI_3.nH_2O$ (A = Li, Na, K, NH₃, Rb, or Cs; n = 0, 2, or 4). ¹³⁾ However, the structure of the $[PbI_3]_n^{n-}$ anion is composed of edge-sharing PbI_6 octahedra. On the other hand, the A^+ cation is "coordinated" by surrounding I atoms and/or water molecules. The difference of the structure between the two types of $[PbI_3]_n^{n-}$ chains might be a result of the size of positively charged particle in the system.

The PbI $_6$ octahedron is elongated along the chain. However, the Pb...Pb distance within the chain of 3.855(2) Å is much shorter than that in PbI $_2$ of 4.556 Å , 13) KPbI $_3$.2H $_2$ O of 4.557 Å, and RbPbI $_3$ of 4.773 Å. 14) In this connection, the I-Pb-I bond angles along the chain is contracted to 72.83(5)° in average. On the contrary, bond distances between Pb and I atoms are almost equivalent with that in PbI $_2$ of 3.215 Å. 15)

References

- 1) G.Hihara, H.Miyamae, and M.Nagata, Chem. Lett., <u>1982</u>, 647; <u>1985</u>, 1635; <u>1986</u>, 2009.
- 2) E.A.Gyunner, Zh. Neorgan. Khim., <u>8</u>, 423(1963) [cited from Chem. Abstr., <u>58</u>, 13198b]; E.A.Gyunner and L.M.Mel'nichenko, ibid., <u>9</u>, 1297 (1964) [cited from Chem. Abstr., 61, 2695c].
- 3) E.A.Gyunner and L.M.Mel'nichenko, Ukr. Khim. Zh., 31, 632 (1965) [cited from Chem. Abstr., 63, 6318c].
- 4) Bis(hexaminium) catena-[Di- μ_3 -iodo-bis{di(μ -iodo)iodo-(hexamethylenetetra-mine)-lead(II)}plumbite(II)].
- 5) Hexaminium catena-Tri-μ-iodoplumbite(II).
- 6) Absorption correction was performed by calculation using UNICS-III program system.
- 7) Using SHELXS-86 program system (reference manual, G.Sheldrick, 1986).
- 8) All the calculations were carried out with the UNICS-III program system on a FACOM M-360 computer at the Computer Center of Josai University.
- 9) Atomic parameters and structure factors are obtainable on request from the first author.
- 10) T.C.W.Mak, W.-K.Li, and W.-H.Yip, Acta Crystallogr., Sect. C, 39, 134 (1983).
- 11) M.Chou and L.Lessinger, Acta Crystallogr., Sect. C, 43, 322 (1987).
- 12) 2.55-2.65 Å in $PbI_2(C_5H_5N)_2$: H.Miyamae, H.Toriyama, T.Abe, G. Hihara, and M. Nagata, Acta Crystallogr., Sect. C, $\underline{40}$, 1559(1980); 2.55-2.60 Å in $PbX_2(C_6H_7N)_2$ (X = Cl, Br, or I): L.M.Engelhart, J.M.Patrick, C.R.Whitaker, and A.H.White, Aust. J. Chem., 40, 2107 (1987).
- 13) D.Badlivy and K.Mereiter, Acta Crystallogr., Sect. B, 36, 782 (1980).
- 14) R.W.G.Wyckoff, "Crystal Structures," John Wiley & Sons, New York (1963), Vol. I, pp. 267-269 : Pb...Pb shortest distance is 4.239(1) Å in the compound 1.
- 15) Estimated value from the data of Ref. 14.

(Received July 13, 1988)